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SUMMARY

A study is made of the Von Kérmén momentum theorem with respect to
1ts application to turbulent boundary layers in a positive pressure
gradient. Although the Von Karmen momentum theorem for turbulent boundery
layers contains momentum terms due to the fluctuating motion as well as
momentum terms due to the mean motion, the general practice has been to
neglect the momentum terms due to the fluctuating motion. Date were
obtained from Schubauer and Klebanoff (NACA TN 2133) and Ludwieg and
Tillmann (NACA TM 1285) with which both the terms due to the mean flow
and the terms due to the fluctuating flow could be evaluated. The results
indicate that the streamwise derivative of the turbulent longitudinal

momentum pu'u’ may be lgrge near separation and therefore should be
considered when the Von Kérmén momentum theorem is used for turbulent
boundary layers near separation.

INTRODUCTION

Because the Von Ké}méh momentum theorem (reference 1) is a relation
between the changes in boundary-layer momentum and the external stresses
of pressure gradient and wall shear, it applies equally well for
turbulent boundary layers as for laminar boundary layers. For turbulent
boundery layers, however, problems arise in the interpretation of
momentum and in the application of the theorem to experimental data.

In a turbulent flow, the net motion is a combination of molecular
motion, turbulent motion, and stream motion. Reynolds (reference 2)
showed that the periods of oscillation associated with these three
phases of motion are distinguishable by means of appropriate time averages.
In aerodynamics, the primary interest in the molecular motion lies in
its integrated effects, that 1s, pressure, temperature, and viscosity.
In the study of turbulent motion, the fluid is generally considered to
be a continuum and the net velocity at any point is assumed to be resolved
into a fluctuating component and & mean component which is independent
of time.
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If the velocities appeared in the equations of motion only to the
first power, a long-time average of the fluctuating component would be
zero and the equations would contain terms involving only the mean
velocities. Because, however, the momentum involves the squares of the
velocities, momentum terms involving time averages of the squares and
products of fluctuating components must be considered inasmuch as they
are not zero. The expression for the Von Kdérmén momentum theorem as
applied to turbulent boundary layers therefore contains momentum terms
for the mean flow and momentum terms involving the fluctuating components.

Methods (references 3 to 5) for calculating the development of a
turbulent boundary layer have, in general, used an empirical equation
for wall shearing stress, a known pressure distribution, an empirical
equation relating the shape of the velocity distribution to the external
forces, and the Von Kérmén momentum theorem to give the changes in
boundary-layer momentum. The problem is determinate if the changes in
boundary-layer momentum are assumed to be ascribed to the mean velocity
alone. Calculations made with these assumptions have given good results
in many instances but recently discrepancies have been noted, especially
in the region of separation.

Discrepancies have also been noted when the Von Kérméh momentum
theorem wes used to obtain wall shearing stress (references 6 to 9).
By assuming that the changes iIn boundary-layer momentum could be
completely described by the mean flow, measurements were made of the
mean veloclty and pressure gradient, and the Von Kérmén momentum theorem
was used as a balance to give the wall shearing stress. This method
gave values of wall shearing stress that increased in a positive pressure
gradient which is in contradiction to the data of references 10 to 12
which indicate that the wall shearing stress decreases in a positive
pressure gradient.

The neglect in the Von Karmin momentum theorem, as it is usually
applied to turbulent boundary layers, of the momentum terms involving
the averages of the fluctuatling velocitles 1s a possible explanation
of the observed discrepancies. This possibility i1s examined in the
present paper. With the use of the Navier-Stokes equations as a starting
point, an integral relation that includes terms resulting from the
fluctuating motion as well as those assoclated with the mean flow is
derived for the turbulent boundary layer. With the use of this relation
and the experimental data given by Dryden (reference 10) and Schubauer
and Klebanoff (reference 11), together with measurements of the wall
shearing stress made independently by Ludwieg and Tillmann (reference 12),
an attempt is made to evaluate the relative order of magnitude of the
terms resulting from the fluctuating motion as compared with those
resulting from the mean motion.
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After the analysis presented hereln had been completed, research
reported by Wallis (reference 13) in Australia was made available.
Wallis surveyed the equations of energy for turbulent boundary layers
and suggested that "where the turbulent boundary laeyer flow is being
rapldly accelerated or decelerated, the von Karman momentum equation will
be inaccurate as it does not take account of the internal process by
which the energy of mean motlion is altered independently of an external
force such as skin friction." Reference is made by Wallis to a private
communication from B. G. Newman in which the problem is approached from
momentum rather than energy considerations. Newman suggests that the
Reynolds normal stresses modify the Von Kérmdn momentum theorem near
separation. Apparently, data were not available with which a suitable
check of the hypothesls could be made.

An analysis similar to that presented herein but much less detailed
is included in a recent paper by Rubert and Persh (reference 14).

SYMBOLS
H boundary-layer-velocity-profile shape parameter (&%/6)
P gbsolute static pressure at any point
t time
u streamwise velocity at a point in boundary layer
U streamwise velocity at outer limit of boundary layer
v normal velocity at a polnt in boundary leyer
x streamwise coordinate
y normal coordinate
o} boundary-layer thickness
&% displacement thickness
2] momentum thickness
K coefficient of viscosity

v coefficient of kinematic viscosity (1/p)
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o) fluid density o
T viscous shearing stress

Subscripts:

m reference condition

0 wall boundary

5 outer limit of boundary layer

Primes denote fluctuating quantities and bars denote time averages.

ANATYSTS

The Navier-Stokes equations for a two-dimensional flow in which
the viscosity and density are assumed constant and the body forces are
negligible are

ou du du
—_ - _=.._ 1
% ' Ty pax < (1)
a_v..g.u?l-i-v?l:-_ +V—aav Bzv (2)
ot Sy 3% o
The associated equation of continuity is
du ov
—— _=O
x5 (3)

By resolving the instantaneous values into mean and fluctuating components,
by considering the mean flow steady and taking a long-time average of

the fluctuating components, by considering the Prandtl boundary-layer
assumptions valid for the mean filow up to separation, and by using the
continuity equation, equations (l) and (2) may be written as

1%, Fu
5ox 35,2 (%)

5 _BE — Bu <au'u' du'v!

o'
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u'v' + ov'v'

ox oy

(5)
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In the immediate neighborhood of separation, the validity of the boundary-

layer assumptions may be open to question. The extent of the error
introduced by making the boundary-layer assumptions under such circum-
stances is, however, not known. In any case, by retaining the terms
due to turbulence, it is not implied that these terms are necessarily
larger than those that have been neglected but that the magnitude of
the effect of the terms due to turbulence is to be investigated. By
combining equations (4) and (5) and by integrating through the boundary
layer, the following equation of momentum is obtained (see appendix):

To _ 48 _ (H + 2) gdu _ _ 1 du'u’ dy +
U2 ax U dx U2 JOo  Ox
)
;L_fa‘/'\y.a__éulv'_‘_av'v'dydy_
v2Jo Jo Ox\ox By)
2=
3 auevdy (6)
2 Jo ox

/
The Von Karméﬁ momentum theorem for laminar boundary layers is

TO as 6 du
'—-pUz-d—x--(H'l'E)ﬁ'd—x-—o

The usual practice has been to consider this equation equally valid for
turbulent flow.

Whether the Von Kéimﬁn momentum theorem can be used for turbulent
boundary layers by considering only the momentums of the mean flow can
be ascertained by experimental evaluation of the momentum terms on the
right side of equation (6).

PRESENTATION OF DATA ARD EVALUATION OF THE MOMENTUM TERMS

Data are presented from which the terms in the Von Kérmén momentum
theorem can be evaluated and the order of magnitude of the terms due to
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turbulence can be compared with the magnitude of the terms due to the
mean flow. .

Mean-Flow Data

Presentation of data and discussion of accuracy.- The mean-flow
data of Schubauer and Klebanoff (reference 11) have been plotted as
(U/Um)e, 6, and H as functions of x in figures 1, 2, and 3,

respectively. The original velocity data were studied in some detail,
and the scatter of data is believed to be a good indication of the
random errors in the measurements and in the integration procedure.

A systematic error occurs in the boundary-leyer data because, in a
turbulent air stream, pitot-tube measurements give values of velocity
which are in excess of the mean local velocity. This error has been
discussed by Goldstein in reference 15 and is shown to be

\/ﬁ? + u'u' - ‘Jﬁ?

The velocity data given by Schubauer and Klebanoff have not been
corrected for the turbulence but sufficient data are presented to permit
this computation. The magnitude of this correction to the velocity

is illustrated in figure U4 for a point just before separation

(x = 25.4 £t). The difference between the curves is somewhat greater
than differences that might be indicated by random errors alone.

The velocity profiles have been corrected and integrated and the
corrected values of 8 are plotted in figure 2. At small values of x,
that is, less than 21.5 feet, the correction to the velocity profile
was negligible. Because the correctlion resulted in a decrease of
velocity, the displacement thickness was increased and the values of
corrected H were considerably higher. The corrected values of H
are plotted in figure 3 and refaired with a dashed line. The corrected
values of these parameters have been used in the subsequent computations.

Comparison of wall shearing stress as obtained by different methods.-

The values of wall shearing stress estimated by Schubauer and Klebanoff
are compared in figure 5 with the values of wall shearing stress obtained
by use of the formulas of Squire and Young (reference 16), Falkner
(reference 17), and Ludwieg and Tillman (reference 12). The flat-plate
(zero pressure gradient) formula of Squire and Young has been used
extensively in the United States in conJunction with the method of

Von Doenhoff and Tetervin (reference 4) and the flat-plate formula of
Falkner has been used in England in conjunction with the method of
Garner (reference 5). The formula of Ludwieg and Tillman was the result
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of some experiments made to determine wall shearing stress 1n a pressure
gradient with the ald of a calibrated heat-transfer instrument.

Although the estimated values of wall shearing stress given by
Schubauer and Klebanoff became zero at separation, at lower values of x
these values of wall shearing stress are considerebly higher than those
glven by the flat-plate formulas. A positive pressure gradient tends
to decrease the velocity in the boundary layer and hence to decrease
the normal gradient of velocity at the wall. Because the flow in the
immediate neighborhood of the wall is laminar, the decrease in normal
velocity gradient at the wall is directly proportional to the decrease
in wall shearing stress. For all values of x larger than 17.5, the
pressure gradient is positive; so the wall shearing stress would be
expected to be less than that obtained by flat-plate formulas. Schubauer
and Klebanoff (reference 11) estimated these values of wall shearing
stress by fairing the pu'v' data to the region of the wall and then
extrapolating the well shearing stress by continuing the fairing to the
wall with a slope equal to the pressure gradient. Although the trend of
the data obtalned by this method is correct, inaccuracies in the extra-
polation resulted in absolute values that are apparently too large.

The distribution of wall shearing stress obtained by using the
formula of Ludwlieg and Tillmenn appears to be the most reasonable from
consideration of the experimental method used and from comparisons with
well-established results for the zero-pressure-gradient case. Inspection
of the Ludwieg and Tillmann formula

To _ _0.123 1
pU°  100-6T8H Reo.268

(wvhere Rg 1is the Reynolds number based on 6) reveals that H must

be infinite for the wall shearing stress to disappear and an infinite H
is, of course, physically unreasonsble. At separation, however, the
indicated value of wall shearing stress is small enough to be considered
negligible.

'
Substitution of mean-flow data in the Von Karméi momentum theorem. -

Values of -d6/dx and (H + 2 %-%g were obtained by use of figures 1,

2, and 3 and are plotted as a function of x in figure 6. The wall

shearing stress To/Eﬁe camputed from the formula of Ludwieg and Tillmann
is also plotted in figure 6. If in the application of the Von Kdrmén
momentum theorem to turbulent boundary layers only mean-flow quentities
need be considered, the sum of the terms would be zero. The sum of the
mean-flow terms is plotted as a function of x 1in figure 7, where it




8 NACA TN 2571

is shown that for a large range of X consideration of mean-flow
quantities alone gives good results; near separation, however, the sum
has a large value. Good results are obtained up to a value of H of
approximately 1.5.

Because changes in the fairing of € will alter the value of %%,

it is of interest to know how much different the values of 06 would
have to be to make the sum of the mean-flow terms zero. The %% required

to make the sum of the mean-flow terms zero was integrated with respect
to x from 17.5 feet to 25.4 feet and the results are plotted as a
dashed line in figure 2. The differences between the experimental curve
and the required curve could not be attributed to differences in fairing.

Fluctuating-Flow Data

Presentation of data.- Values of Jiliﬁil reported by Schubauer and

Klebanoff have been plotted as a function of x and y in figure 8.
The data were plotted "three dimensionally"” to facilitate fairing.
Successive planes of x = Constant were indicated along a 45° axis at
distances equal to particular values of x. By this method of plotting,
curves of ¥y = Constant can be used to check the fairing and to aid
the visualization of the surface. This method of plotting and fairing
can be used because the function indicated by the fluctuating-flow data
is regular up to separation.

Evaluation of the momentum terms due to turbulence.- The faired
data of figure 8 and figure 1 were used to obtain the values necessary

to evaluate the term
1 ‘jfs Sutu’
= dy
U 0 Bx

which is plotted as a function of x in figure 7. The magnitude of
this term is affected only moderately by the fairing of the data. The
value of this function is small at lower values of x and becomes large
only in the region of separation. A comparison of the value of this
function with the sum of the mean-flow terms obtained from figure 6

—

5
indicates that, at least qualitatively, the term tlr_2 f a'u' dy, together
0 X

with the mean-flow terms may be sufficient to describe the momentum
balance in the turbulent boundary layer up to separation. A more precise
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discussion of the importasnce and absolute magnitude of this term can be
given only after more data are made available.

In order to evaluate the term

5 Yy
l_f f .a——aulvl Bv'v'
20 Yo ok ¥ dy >dydy

ox

the data of Schubauer and Klebanoff were investigated. The magnitude of
this term is affected by the differentiation and integration processes
and for that reason is influenced by small changes in fairing. A calcu-
lation was made in which the integrand was believed to be large. The
calculation indicated that the term

o)
l_f ﬁa aulvl a-vlvl
©Jdo Jo ax\ox dy >dydy

was a small fraction of the term

8 ——
1 du'u'
p2 Yo  ox

but the results were too inaccurate to warrant presentation.

In evaluating the term

o 2.
e} uTv?

u2 ox®

g ey
the data were sufficient to give a magnitude to B; AJ but were
X

Beu'v'
ox2

factor © appears in the numerator, it is believed that the magnitude
of the term is small.

insufficient to permit calculation of

Because, however, the
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CONCIUDING REMARKS

Experimental data show that the streamwise derivative of the turbulent

longitudinal momentum pu'u' may be of suffiq}ent magnitude to require
its inclusion in the application of the Von Kermén momentum theorem to
turbulent boundary layers near separation. The data show that for the
particular case considered the Von Kérmén momentum theorem with only
mean-flow terms gave satisfactory results up to a value of the boundary-
layer-velocity-profile shape parameter H of approximately 1.5. A
quantitative discussion of the importance of the fluctuating components
can be made only when more data become available.

Langley Aeronautlical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., August 29, 1951
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APPENDIX

s s
DERIVATION OF THE VON KARMAN MOMENTUM THEOREM

FOR TURBULENT BOUNDARY LAYERS

The simplified Navier-Stokes equations, as given previously by
equations (1) and (5), are

cam, o m), (E, a)_am, o
ox 3y By p ox 3y°

du'v! + ov'v?
ox oy

From the last of these two equations

5 &
— — — u'vl oviv' — ou'v’
- + dy=pf ay
Po ° »/:) <Bx 8y> o Ox

because for simplicity v'v' 1s assumed to approach zero at y =8
and at y = 0. Also

_ Y fauy Bv V'

.1
p oy

Then

and
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because

v U

s
= U

ol |+

By substituting equation (Al) into the first of the simplified
Navier-Stokes equations, the following equation can be written for a
turbulent boundary layer in a two-dimensional incompressible flow:

Yoy ey Taq 1 T 1 8_'1_7'
(-ﬁ.a.e+v@>+<auu+auv> oW D [Paw,
x  dy > ¥y x axVYo ax

¥
d (du'v' Jviv' %%
J; 'a—x<ax + ay dy’-l-V—-—E (AQ)
oy
In order to describe the action of the turbulent boundary layer as a

whole, equation (A2) is integrated with respect to y through the
boundary layer:

N L ik
e G T
LU ee [V Be w

Now
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tS] (3] d \2
i > [° o d})dy=6f G
o \oxJo x 0
and from continuity

- J
5 o _k/P ou ay
o ox
If these quantities are substituted in equation (A3), the following
relation is obtained:

% e} ‘/25 Uady -k/;8<;/hy gg d%> %5 : % ‘jf U2dy -

0]

Bx ax

fafya TV L )y g
o Jo 9x\ ox dy

5 e 5 e e
T0 _f du'u’ iy - Bf Bzu'v' ay +
0] 0 2

(AL)

where

8 ' —— ————
f V! dy = (u'v.)a _ (u:vx)o -0
0

dy

Integration by parts gives

te} o} 2

3T . |ou af_ 1af_2 U= 3%
&L ay dy = u <. dy - = =— =22 (a
f:(/: > do ¥ T aamdy TV e W)

ox oy
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Substitute equation (A5) in equation (Ak) and divide by US; then

1 3 fou'v'  ov'v'
U_e'/jf:’a;(ax ™ >dydy (e

Let the momentum loss M of the stream be defined by
M = pUe

where 6 1s the momentum thickness, then

Bfe:EfﬁU-tf)dy
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or

©
i
Cﬁ,
dlel
1
1=l
1
@
L

Now
de 1 a MP(=2 > 1a [° 1 au
_— - — —— - = — q - - & o%
3 U23/; T v &y + 5 3 A (T -U) &y U_(26+ )

where &%, the displacement thickness, is defined by

5 _
u
8*=_/;<1'E dy = &*(x)

By using equation (A8), equation (A7) may be written finally es

e du _ 1 ®

te) Y ts) —
1 d (du'v' viv' 5 T
= + dy dy _.__\jp dy

where H is defined as &*/6. This equation is the momentum theorem for
turbulent boundary layers and is given as equation (6) in the body of
the paper.

ay +
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